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We present results of the calculation of superharmonic normal mode perturbations 
to the exact nonlinear deep-water capillary wave solution of Crapper (1957). By 
using the method of Longuet-Higgins (1978a), we are able for the first time to 
consider all waveheights up to and including the maximum for two-dimensional 
perturbations. We find agreement with the recent asymptotic analysis of Hogan, 
Gruman & Stiassnie (1988). Superharmonic instabilities are found at  various 
waveheights less than the maximum. 

1. Introduction 
In  this paper we investigate the stability to superharmonic normal-mode 

perturbations of the exact nonlinear deep-water capillary wave solution of Crapper 
(1957). This celebrated closed solution satisfies exactly the nonlinear boundary 
conditions of wave motion on the surface of an ideal fluid under the influence of the 
restoring force of surface tension only. As is well known it differs from the solution 
for gravity waves in that it need not be expressed as an infinite Fourier series. 

The calculation of the stability of this solution to three-dimensional perturbations 
has been attempted before by Chen & Saffman (1985), using the method of McLean 
et al. (1981). But the numerical computations proved unreliable a t  a value of the 
wave steepness far short of the maximum. In that calculation, the exact solution was 
inverted and expressed as a Fourier series. In  this paper we restrict our attention to 
two-dimensional perturbations to the waveform but can consider arbitrary wave- 
heights by using the method of Longuet-Higgins (1978a,b). In  addition we use the 
exact form of Crapper’s (1957) solution and so avoid any singularities associated with 
inversion, as found by Chen & Saffman (1985). Our results are shown to agree very 
well with the asymptotic analysis of Hogan, Gruman & Stiassnie (1988), namely that 
increasing the waveheight reduces the relative speed of the perturbations. A t  certain 
waveheights, two eigenvalues collide to produce the new type of superharmonic 
instability discovered by MacKay & Saffman (1986) for gravity waves. We shall 
consider subharmonic normal-mode perturbations in another paper. 

In $2, we give an outline of the method of Longuet-Higgins (1978a), as applicable 
to any free-surface flow under the action of surface tension, in the absence of 
viscosity. In  $3,  we consider the basic flow to be a uniform flow and show that the 
perturbations are simply free capillary waves travelling with or against the 
stream. 

In $4, we introduce Crapper’s (1957) exact solution and in $5 we give the form of 
the normal-mode perturbations that we shall consider. We note that there we use 
Tanaka’s rearrangement technique as given in Longuct-Higgins (1986). This is a 
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simple operation on two square matrices which essentially halves the amount of 
computing time required. Section 6 contains the results together with comparison 
with the theory of Hogan et al. (1987). We summarize our conclusions in $ 7 .  

2. Nonlinear boundary conditions and perturbation analysis 
We take an arbitrary time-dependent, two-dimensional and irrotational flow of a 

fluid which is incompressible and inviscid. We include the restoring force of surface 
tension and neglect gravity. For the moment, it is not necessary to assume a wave- 
like flow. The velocity potential and stream function are denoted by $(x,  y, t )  and 
$(x, y. t )  respectively. x and y are Cartesian coordinates, with y vertically downwards, 
x to the left, and t is time. At the free surface F ( x ,  y,  t )  = 0, we must satisfy the 
condition that particles initially a t  the surface remain there, that is 

D B  
- = O  o n 9 = O  
Dt 

together with Bernoulli’s condition 

7 a$ $f+-+- = P(t)  R at 
on B = 0, 

(2.1) 

(2.2) 

where q = V$, 7 is the surface tension divided by the density, R is the radius of 
curvature of the surface, and P is independent of position. 

Much of this section closely parallels $2 of Longuet-Higgins ( 1 9 7 8 ~ ) .  We shall 
merely quote relevant results from that paper. In particular, since 

then (2.2) becomes 

(2.3) 

If we take F(x, y, t )  = G($, $, t )  3 ~ - - F ( $ ,  t ) ,  (2.4) 

where c is a small parameter on the scales of the unperturbed flow, then the kinematic 
condition (2.1) can be written as 

This is, of course, identical with equation (2.7) of Longuet-Higgins (1978a) since 
surface tension plays no explicit part in (2.1). 

In order to calculate the form of (2.3) in the light of (3.4), we first consider the 
radius-of-curvature term. Thus 

(2.6) 

Then using the Cauchy-Riemann equations for (x, y), regarded as functions of ($, $), 
we find that (2.3) becomes 
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and we can rewrite (2 .5 )  as 

er 1 - (Yq  Yt + Y ,  341 p ,  + 4 Y ;  + Y;) Ft + ( Y ,  Y t  - Yq xt ) = 0. (2.8) 

Equations (2.7) and (2.8) hold for any flow, subject to the constraints mentioned in 
the first, paragraph of this section. 

We now perturb (2.7) and (2.8) about a steady flow whose free surface is given by 
$ = 0. We take, in general, therefore for two-dimensional perturbations 

(2.9) I 4 4 ,  ~3 t )  = X ( 6  $c., +4 (A  $, t ) ,  

Y W  $, t )  = Y ( 6  $) +M+> $1 % 
where 6, 71 and F are all of order 1. We then substitute (2.9) into the governing 
equations (2.7) and (2.8), and Taylor expand each term about $ = 0. 

The Bernoulli equation (2.7) gives us a t  0(1 )  

(2.10) r 1 ,+(Y$+Y$) 1 E-/3 = O  on $ = O ,  
and a t  O(s)  

-(Yq71t+Y,5t)+[2r4Y4+2r,,Y,+(Y~+Y;),,Pl 

The kinematic condition is satisfied identically a t  O(1). At O(s) we have 

~ q + ( Y ~ + Y $ ) ~ + ( Y p r t - Y q ~ t )  = O  o n $ = = .  (2.1%) 

We seek wave-like forms for 5, 11 and F with time-dependence e-'"' where 
Im (CT) > 0. The fastest growing instability will have the largest Im (a).  The foregoing 
analysis is valid for arbitrary well-behaved steady flows x = X($, $) ; y = Y ( $ ,  $). 

3. The perturbation of a uniform flow 

with which to check our calculations. We consider the uniform flow given by 
The equations in $ 2  are quite general and we have a t  our disposal a simple flow 

X = $ ,  Y = $ .  (3.1) 

Equation (2.10) is then satisfied provided p = +. 
From (2.11) with this value of P ,  we find 

- 6t - r, + 7 E q q  f 744) = 0, 

Fq+l$+yt = 0. 
and from (2.12) we have 

For solutions of the form 6 = ir = a e-k($-i$)-iut 

F = -b eik$-iot (3.4) 

we obtained the coupled equations 

( k - g - n t 2 ) a + r k 2 b  = 0, 

CTa+(k-CT)b = 0. (3 .5)  
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For non-zero values of a and b ,  we require 

(T = k +  (7k3)i, (3.6) 

which is the correct phase speed for free capillary waves travelling with or against the 
stream. 

In the next section, we consider the unperturbed flow to  be a uniform nonlinear 
wavetrain. 

4. Pure capillary waves 
The steady solution S, Y that we shall consider in the rest of the paper is originally 

due to Crapper (1957), who calculated the explicit exact solution for nonlinear pure 
capillary waves on water of infinite depth. 

We view the wavetrain in the frame of reference moving with phase speed c. The 
wavelength is h and the crest-to-trough waveheight is 212. Crapper found that 

(P 4B sin0 

@ 4B(B+cos0) 

’) = c - k [ l +  B2+2B cos 01 ’ 

I”” ‘) = c+ k[l  + B2+2B COSO]’ 

where k is the wavenumber, 0 = k $ / c ,  B = A e-k*’c, A is a monotonic function of the 
wave steepness ak given by 

and 

4A 
ak = ___ 

(1-A’) 

(1-A’) 
c2 = 7 k -  

( 1 + A 2 ) ’  

(4.2) 

(4-3) 

We note that c is a decreasing function of wave steepness and that the highest 
wave contains a trapped bubble in the trough. The maximum value in this case is 
given by ak = 2.292624. 

Throughout the rest of this paper we take 7 = 1 and h = 2n, hence E = 1. 

5. Superharmonic perturbations 
We now solve (2.11) and (2.12) for [,q, F and (r using (4.1) as the basic steady flow. 

Equation (2.10) is satisfied identically provided that we take /3 = 9’. The problem 
reduces to an eigenvalue system which we can solve, following the method of 
Longuet-Higgins ( 1 9 7 8 ~ ) .  In  a recent paper Chen & Saffman (1985) considered the 
more general problem of three-dimensional perturbations to Crapper’s ( 1957) 
solution using the method of McLean et al. (1981). This method requires that (4.1) be 
inverted to obtain I’ as a function of S, expressed as a Fourier series. Unfortunately 
this transformation appears to be singular and does not allow consideration of any 
form of perturbation above ak = 0.37, approximately. This of course is well short of 
the maximum wave height. Our method overcomes this grave disadvantage but is 
itself restricted to  two-dimensional normal-mode perturbations. Thus in this paper 
we take 6, q and F to be periodic in 9 with the same basic wavelength 2n. This will 
allow us to calculate the superharmonic perturbations to (4.1). We will consider 
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subharmonic perturbations in the manner of Longuet-Higgins (19783) in a 
subsequent paper. So we take 

00 

5 = e-irt {a, + :, ecn*.IC[an cos no- 6, sin n6] 

00 

= e-iut { b, + zl ePn*lc[bn cos n0 + a, sin no] 

m 

F = e-ict { :, [c, cos n6 + d ,  sin n6]  

where there is no constant term in F since $ = 0 is the surface of the unperturbed 
wave. 

We must now embark on the lengthy calculation of substitution of (5.1) into (2.11) 
and (2.12). This is a straightforward exercise whose details are similar to those 
contained in Longuet-Higgins ( 1 9 7 8 ~ ) .  The final comparison of coefficients of sin n6 
and cos n0 produces an infinite system of equat'ions in the unknown real coefficients 
a,, 6,, c,, d, which can be written in the form 

-igAx+Bx = 0. (5 .2)  

The square matrices A and B have elements which are functions only of alc and x 
is the column vector ({a,}, {b,}, {c,}, {d,}). We solve this system by truncation a t  
n = N ,  which means that A, and B, are both of order (a+ 2 )  x (4N + 2) and x, has 
( 4 N + 2 )  elements. The layout of A, and B, is identical with those matrices found 
in Longuet-Higgins (1978u),  that is the introduction of capillarity has no effect on 
their form. Thus for N = 3 ,  our matrices A, and B, have elements arranged in similar 
box fashion to those in figures 5 and 6 of Longuet-Higgins (1978a),  although the 
values of these elements are different. This observation is important because it means 
that advantage can be taken of a rearrangement of these matrices, originally due to 
Tanaka and contained in Longuet-Higgins (1986). This leads to a significant 
reduction in computation time for a given N and perhaps more significantly to an 
increase in the value of N and hence the number of coefficients of 5, r,~ and F that can 
be calculated in a given amount of computation time. 

In  fact we can rewrite (5.2) as 

(5 .3)  

where x, = ({a,), {d,})T and xz = ({6,}, { c , } ) ~ .  It is then straightforward to show 
that 

(5.4) 

(5 .5)  

Thus if we are only interested in the values of the complex frequency v we can 
solve either (5.4) or (5.5), a considerably easier task than solving (5 .2) .  There is 
another benefit to be obtained from this procedure. The submatrices A,,, A,,, B,, 
and B,, each have to be calculated explicitly in order to  solve for CT in either 
of the above equations. It is therefore an important check on the calculation that 
the values of cr obtained from (5.4) should be identical with those obtained 
from (5.5). 

(g2A11 + B,, A i l  B21) x, = 0, 

(r2A2, + B,, A;: B,,) x, = 0.  
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In  what follows, we have found convergent solutions a t  N = 30 for most values of 
the steepness ak. Near the maximum value of ak, we have used N = 40. All the 
computations were performed on the University of Oxford's ICL 2988 computer, 
using subroutines from the NAG library for operations involving the matrices. 

6. Results and comparison with theory 
We have plotted in figure 1 the values of R e ( a )  against the steepness ak of the 

basic nonlinear wave. The abscissa ranges from zero up to the maximum waveheight 
whereas the ordinate has the arbitrary range of zero to 12. The perturbations have 
been labelled n = & 1, f 2,. . . following Longuet-Higgins ( 1 9 7 8 ~ ) .  Perturbations that 
travel in the opposite sense to the unperturbed wave have negative values of n. As 
n k + 0  we have 

Positive values of n correspond to travelling in the same sense as the unperturbed 
wave, but because of the dispersion relation for pure capillary waves, we must take 
the different branch of the solution to obtain Re (a) > 0. Thus we have for positive 

(6.1) a = In1 +I?& 

n as ak-20 
a = - (In1 - 

Both (6.1) and (6.2) are verified in figure 1. As ak increases, the perturbation 
interacts with the basic, wave in such a way that Re (a) is reduced for all values of 
n. This can be verified using recent results from Hogan et al. (1988). as follows. 

Let us consider two wavetrains of capillary waves in parallel propagation. One 
wavetrain is slightly nonlinear and has wavenumber kl.  amplitude a,, and speed c, .  
The other wavetrain is linear and has wavenumber k,,  amplitude a,, and speed c,. 
We take k ,  < k,. Thus from Hogan et al. (1988) we have 

C, = (k , ) i+$(a,  k , ) , - H ( y ) ,  g 2  

k2 

where y2 = k , / k , .  The function H ( q )  is given in Hogan et al. (1988, equation (6.6) and 
figure 2). In  addition the speed of wave 1 is also affected by its own amplitude 
according to the expression 

Now the speed of linear wave 2 in the frame of the nonlinear wave 1 is given by 

(6.4) 

c; = c2-c1 (6.5) 

c1 = 1 -&(a, k , )2 .  

and so the relative frequency nk = k ,  c; is found from (6.3), (6.4) and (6.5) to be given 

a; = - k 2 + k ~ + - [ 2 ' H ( q ) + l ]  i n  ( a 1 l Q k , .  
16 k ,  

For our purposes, k ,  = k = 1 and k ,  = In1 and we find that the frequency of 
wave 2 has been changed by an amount An, given by 

Aa2 = L[21nliH 16 (A) + 11 In( (ak)2.  

A similar reasoning for two wavetrains in antiparallel propagation gives the result 
that 
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Re 

0 0.4 0.8 1.2 1.6 2.0 2.292624 
uk 

FIQURE 1. The real part of the frequency of normal mode perturbations CT plotted against the wave 
steepness ak of the basic wave. A continuous line denotes stability; a broken line denotes 
instability. 

These two formulae are plotted in figure 2. The solid lines represent the actual 
computations and the dotted lines are either (6.7) or (6.8) depending an the sign of 
n. The case n = 1 is omitted since then the two waveleq@hs are equal. The case 
n = 7 would lie about directly on top of the case n = - 3 and so has been omitted for 
the sake of clarity. The agreement i s  particularly epcouraging for all values of n, even 
up to values of ak = 0.4. Indeed €or the lower positive values of n, the difference is 
very small even at  ak = 0.6. This gives us great confidence in the numerical code, 
coming on top of the other checks that have been performed. 

There are other features of figure 1 that require comment, in particular the 
collision or near collision of various pairs of modes. Let us first consider the modes 
n = 4 and n = -2  near ak = 1.4. According to the work of MacRay & Saffman 
(1986), the two eigenvalues have opposite signature and so any collision may result 
in an instability. We have plotted in figure 3 a close-up of figure 1 near the point of 
interest. It appears that the two modes do not interact. We are unable to invoke 
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0 0.1 0.2 0.3 (ak)' 0.4 0.5 0.6 

-0.1 

-0.2 

-0.3 

-0.4 

A02 
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-0.9 
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ak 

FIGURE 2. The change Avz of the frequency of the normal mode perturbations as a function of 
(ak)2.  A continuous line denotes the computational results; a broken line denotes the analytic 
expressions equation (6.7) for n > 0 and (6.8) for n < 0. 

1.2 1.3 1.4 I .5 1.6 

ak 
FIGURE 3. The close approach of modes n = 4 and n = - 2  near ak = 1.4. 

rounding error to make up the difference because this is of order obtained in 
evaluating the zero eigenvalue for the mode n = 1. 

We now move to the clear collision of modes n = 5 and n = - 3 around ak = 1.86. 
This bubble of instability has been magnified in figure 4 where both Re ((T) and Im ((T) 
(upper and lower curves respectively) have been plotted against ak. We can describe 
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- 

2.7 - 

2.6 .-.-a .-.-. 

0.02 

0.01 
Im (4 

this instability in the notation of McLean et al. (1981). These authors considered 
perturbations to the free surface and velocity potential given by an infinite sum of 
modes similar to our equation (5.1). The j t h  perturbation has period 2n/q in the 
spanwise direction a.nd period 2n/( p + j )  in the propagation direction. The real 
numbers p and q are arbitrary. Only if p is rational will the perturbation in the 
propagation direction be periodic. McLean et al. (1981) found two classes of 
instability for gravity waves. Chen & Saffman (1985) outlined both classes for 
capillary waves. It is straightforward to show from the mode numbers that figure 4 
is a Class I, m = 4 instability band crossing p = 1 at  q = 0 with growth rate given 
approximately by (ak /n)8  = 0.015. This is close to the exact computations. 

In figure 5 we consider the close approach of modes n = 7 and n = -4 near 
ak = 0.56. Graphically it is impossible to tell them apart and the computed difference 
in the values of Re ((T) is only 5 x lop5 at ak  = 0.560 159. We strongly suspect that 
instability does occur here but that our program cannot resolve the collision of the 
two modes. If this were the case it would be a Class 11, m = 5 instability band 
crossing p = 2 at q = 0. The growth rate (and hence almost certainly the band width) 
is extremely small, expected to be of the order of (ak/n)" = 6 x lo-'. Values of this 
size cannot be resolved by our program. The signature of the modes could be 
exchanged in this collision with the negative signature being transferred from the 
n = -4 eigenvalue to the mode that subsequently collides with the positive signature 
n = 6 mode near ak = 2.1. This is then consistent with the work of MacKay & 
Saffman (1986). This second collision is shown in detail in figure 6. We consider that 
this may be a Class I, m = 5 instability band passing p = 1 a t  q = 0, with growth rate 
(ak/n)l0 = 0.02. This is in keeping with the computed values. 

The above conclusions concerning the possible nature or existence of the eigenvalue 
collisions could be supported in another way, as sketched in figure 7 .  Here we show 
collisions for Class I and Class I1 instabilities in the (p,q)-plane. This is similar to 
figure 2 of Chen & Saffman (1985). The solid lines are valid for ak = 0. As ak increases, 
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FIGURE 5.  The very close approach of modes ri = 7 and ri = -4 near ak: = 0.56. 

0.02 
3.4 t 11 

I ,-.-. L ___ 3.3  0- 
2.0 2.04 

< --.--.- 

ak 

FIGITRE 6. The collision of modes near nk = 2.1 with axm as in figure 4. 

these lines will broaden (although not all a t  a uniform rate) and move to the left. We 
have sketched a possible behaviour for ak > 0 for the Class 11, m = 5 instability. As 
it broadens and moves t o  the left it very soon intersects the point ( p ,  q )  = ( 2 , O )  and 
hence give rise to the collision between modes n = 7 and n = - 4  near ak = 0.56. This 
is not possible for any mode in Class I1 with m < 5 because for ak = 0, the solid lines 
intersect the q = 0 axis a t  p < 2. Eevertheless, it may be possible for these lines to 
broaden and intersect the point ( p ,  q )  = ( 1 , O )  albeit a t  an extremely large (possibly 
unphysical) value of ak. Similarly it is possible that the lines of the Class I collisions 
would also broaden and the cases m = 3 and 4 intersect the point ( p , q )  = ( 1 , O ) .  
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0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 
P 

FIQURE 7 .  The curves for collisions a t  ak = 0 in the ( p ,  9)-plane for Class I, m = 1, 2 ,  3, 4 and 5 
instabilities and for Class IT, rn = 0, 1, 2 ,  3, 4 and 5 instabilities. together with a sketch of the 
possible behaviour of the Class 11, m = 5 instability band for ak > 0. 

There is however a great deal of caution to be exercised in applying the above 
reasoning to our computations. In fact, Zhang & Melville (1987) have shown that the 
behaviour of these bands, a'lbeit for gravity-capillary waves. is much more varied 
than has been found for pure gravity waves. For example some of the bands can 
broaden and then shrink again and even disappear for ak > 0. This gives rise tjo a 
possible explanation for the non-collision of modes n = 4 and n = -2  near ak = 1.4. 
The band of the Class I, m = 3 line broadens, moves to the left, detaches itself from 
the line q = 0 and subsequently disappears either before or after passing the line 
p = 1. It would then not be visible in our purely two-dimensional work. Such a 
behaviour is indeed exhibited in figure 4 of Zhang & Melville (1987). Between figure 
4(c), ak = 0.3 and figure 4(d ) ,  ak = 0.4 the sum triad (one of the two Class 11, 
m = 0 instabilities) has indeed left the q = 0 axis but remains visible, only t'o 
disappear completely in figure 4 ( e ) .  ak = 0.5. More computation is necessary before 
any firm conclusions can be drawn on the behaviour of all the relevant instability 
bands in the (p,q)-plane. 

It is quite possible to sketch the form of (4.1) for ak greater than the maximum. 
This corresponds to a physically unrealisable solution with parts of the surface 
intersecting other parts. Nevertheless we have calculated the eigenvalues for some of 
these values of ak,  as given in figure 8. This shows two modes colliding extremely 
close to the maximum value of ak. (The upper mode has been omitted from figure 1. )  
This appears to correspond to a Class I, m = 6 instability near p = 1, q = 0 and fits 
in perfectly with the sketch given in figure 7. Nevertheless, the expected growth rate 
is around (ak/n)12 = 0.03 which is considerably smaller than our calculations. On 
increasing N to 50, we confirmed the values in figure 8 to three significant figures. In 
addition we continued our calculations beyond ak = 2.6 and the instability was still 
present. Thus it appears that it is not a bubble of inst'ability and that the behaviour 
in the (p,q)-plane a t  these values of ak can not bc so simply understood in terms of 
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4.4 

Re (0) 

4.2 - 

Im (4 
4.0 - 

3.8 - - 0.2 

3.6 I I I 

2.20 2.22 2.24 2.26 2.28 ’ 2.30 2.32 2.34 2.36 2.38 2.40 

ak (ak),,, 

FIGURE 8. The collision of modes near the maximum physical value of ak denoted by (ak),,, with 
axes as in figure 4. 

linear resonances. The minimum in the lower mode a t  ak = 2.24 just before collision 
is correct to  three significant figures. 

We note that there are no extrema in the value of the rest frame wave energy E 
as a function of ak (Hogan 1979, figure 2). This corresponds to the fact that none of 
the eigenvalues with n > 1 have Re ((T) = 0 and so the Tanaka (1983) superharmonic 
instability is absent in this case. 

Finally we conclude by re-emphasizing the speculative nature of our discussions 
of the behaviour in the ( p ,  q)-plane. We have presented one set of conclusions based 
on limited observations. Other conclusions may be possible. The resolution of 
the problem must await the full three-dimensional computations right up to 
ak = 2.292624 and beyond. 

7. Summary 
We have calculated the superharmonic normal-mode perturbations to the 

nonlinear capillary wave solution of Crapper (1957). By using the method of 
Longuet-Higgins (1978a), we have been able for the first time to calculate eigenvalues 
right up to the maximum waveheight, and beyond. Our method has been shown to 
produce the correct analytic solution for the perturbation of a uniform flow. In  
addition our computations are in excellent agreement with some recent asymptotic 
results for small steepness (Hogan et al. 1988). We have placed our results within a 
consistent framework for future work involving three-dimensional perturbations. We 
find superharmonic instabilities even in the absence of extrema in the rest frame 
wave energy, a t  relatively low wavehcights. Our results for ak > 0 are separate from 
but complementary to those of Chen & Shaffman (1985) and Zhang & Melville (1987) 
who were both interested in subharmonic instabilities over a restricted range of 
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waveheights. We shall extend our calculations to those pertubations in a companion 
paper. 

This work was  carried out  while the author held the CEGB Research Fellowship 
in Applied Mathematics at St. Catherine's College, Oxford. 
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